Boundary Element Method approach to forward problem solution in Diffusion Optical Tomography
نویسندگان
چکیده
In this paper the capabilities of optical tomography (OT) applied to breast cancer detection have been discussed. The first step toward the creation of the model is forward problem solution. For this purpose BEM with isoparametric triangle element has been implemented, which improves the solution accuracy. The forward problem solution in OT is based on the solution of diffusion equations in the frequency domain. In the case where scattering and absorption are homogenous, the equation reduces to a Helmholtz equation with Robin boundary condition. Streszczenie. W pracy przedstawiono zastosowanie dyfuzyjnej tomografii optycznej (DTO) do detekcji raka piersi. W celu rozwiązania zagadnienia prostego w DTO należy rozwiązać równanie Helmholtza w dziedzinie częstotliwości z warunkami brzegowymi Robina. W tym celu zastosowano metodę elementów brzegowych z trójkątnym elementem izoparametrycznym, co wpływa na poprawę dokładności rozwiązania.(Zastosowanie metody elementów brzegowych do rozwiązanie problemu prostego w dyfuzyjnej tomografii optycznej).
منابع مشابه
GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography
We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse p...
متن کاملAnisotropic diffusion regularization methods for diffuse optical tomography using edge prior information
Diffuse optical tomography (DOT) is a non-invasive functional imaging modality that aims to image the optical properties of biological organs. The forward problem of the light propagation of DOT can be modelled as a diffusion process and is expressed as a differential diffusion equation with boundary conditions. The solution of the DOT inverse problem can be formulated as a minimization of some...
متن کاملExperimental Validation of Forward and Inverse Solutions for Electrical Impedance Tomography Using the Boundary Element Method
We report on the results of an EIT phantom study using an experimental tank with agar conductivity inhomogeneities, used to verify the accuracy of both a boundary element method (BEM) forward model and a non-linear inverse solution based on the BEM model. We introduce the shunt electrode model into the BEM equations for greater accuracy and derive the associated Jacobian for the inverse problem...
متن کاملBending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method
This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...
متن کاملDiffuse photon propagation in multilayered geometries.
Diffuse optical tomography (DOT) is an emerging functional medical imaging modality which aims to recover the optical properties of biological tissue. The forward problem of the light propagation of DOT can be modelled in the frequency domain as a diffusion equation with Robin boundary conditions. In the case of multilayered geometries with piecewise constant parameters, the forward problem is ...
متن کامل